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ABSTRACT

Whereas the higher-order versions of the finite element method (the 1>-and
hp-versions) are fairly well establishedas highly efficient methods for monitoring
and controlling the discretization error in linear problems, little has been done to
exploit their benefits in elasto-plastic structural analysis. In this paper, we discuss
which aspects of incremental elasto-plastic finite element analysis are particular
amenable to improvements by the p-version. These theoretical considerations
are supported by several numerical experiments. First, we study an example for
which an analytical solution is available. It is demonstrated that the p-version
performs very well even in cycles of elasto-plastic loading and unloading, not
only as compared to the traditional h-version but also in respect to the exact
solution. Finally, an example of considerable practical importance - the analysis
of a cold-worked lug - is presented which demonstrates how the modelling tools
offered by higher-order finite element techniques can contribute to an improved

approximation of practical problems.
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1. Introduction

Elasto-plastic analysis is of increasing importance in all fields of engineering

sciences. However, real-life elasto-plastic problems are difficult to solve because they are

non-linear in nature. Approximate numerical methods are required for solving practical

problems of elasto-plasticity. The last two decades have witnessed a great deal of research

for finding approximate solutions to elasto-plastic problems by the finite element method

(FEM). For an excellent review of the techniques of elasto-plastic modeling in the

framework of the finite element method, we refer to [1].

Almost all research work on elasto-plastic finite element analysis was based on the

traditional h-version of the finite element method. The theoretical basis of the h-version is

explained in [2]; see, e.g., [3] for details on the application of the h-version to elasto-

plasticity. Whereas a lot of attention has been focussed on realistic material models, the

equally important issue of the accuracy of numerical modeling, including questions of

discretization errors and convergence of the error in energy norm, remain largely
unaddressed (see, however, [4], [5]).

During the last decade, techniques for monitoring the discretization error in finite

element approximations have been studied thoroughly, and new strategies for an efficient

minimization of the error in energy norm have been developed. In the p-version of the

FEM, the polynomial degree of the finite element approximation is increased to improve

the accuracy of the solution, rather than following the traditional approach of mesh

refinement (h-version). The hp-version combines mesh refinement and increasing
polynomial degrees.

The theoretical basis and convergence properties of the h-, p-, and hp-versions of the

FEM for linear elliptic problems have been well established. For a survey of the state-of-

the-art of the p- and hp-versions of the finite element method based on the displacement

formulation, the reader is referred to [6]. By all measures of performance, the higher-

order methods provide superior accuracy (with respect to the discretization error) than

their h-version counterpart for a large class of linear problems including linear elasticity.

The performance of the p-version for elasto-plastic stress analysis problems has not

been investigated until very recently. To the authors' knowledge, the first numerical

experiments which include incremental elasto-plastic material models in the frame of

higher-order finite element methods have been reported in [7]. However, at that time no

further discussion or evaluation of the efficiency of the p-version for this class of

problems has been given. The first author of the present study has developed an

experimental finite element code named FEASIBLE (cf. [7]) which includes p-version

capabilities and provides elasto-plastic material laws as well as multi-stage analysis. This

implementation has been employed for the numerical examples included in sections 5
and 6.
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Recently, the applicabilityof thep-versionfor solvingelasto-plasticproblems,using
thedeformation theory of plasticity, has been investigated numerically in [8]. This study

shows that, even though the deformation theory is, strictly speaking, restricted to cases

where the principal stresses remain proportional to each other throughout the plastic.

process, both theories yield very similar results in many cases. However, the problem

categories amenable to the deformation theory do not include unloading and cyclic elasto-

plastic processes.

Therefore, the present paper focusses on the incremental theory of plasticity (for an

introduction, see, e.g., [1], [9]). The paper is organized as follows: We identify those sub-

tasks of the elasto-plastic finite element procedure which determine the computational

performance and accuracy of the numerical analysis. Subsequently, we discuss in which

steps of the elasto-plastic analysis we would expect improvements when switching to the

p-version. It is shown that many of the advantages of the p-version in purely linear

analysis carry over to elasto-plastic problems. A numerical study of the loading and

unloading of a thick-walled cylinder under internal pressure is presented. For this

problem, an exact solution is available. The analytical results are then compared with the

finite element solutions obtained by the p-version and the h-version. We demonstrate that

the p-version method performs very well, also as compared with the h-version.

Finally, some unique features of the p-version finite element code are illustrated

which permit realistic modeling of practical engineering problems. The finite element

solution to a lug which undergoes cold-work expansion is provided and compared with

the approximate closed-form solution often used in practice by engineers. This example

demonstrates that many cold-working problems demand a finite element analysis when

other than very crude accuracy requirements are imposed. Furthermore, it shows that the

p-version of the FEM makes the analysis of such problems very convenient and easy as
well as reliable and robust.
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2. Finite element approximation

Once a specific material model has been selected and the geometrical and mechanical

idealization of the structure has been determined, the problem of structural analysis is cast

in the form of a purely mathematical problem_ The finite element method is a tool for

solving this well-defined mathematical problem approximately. The primary aim of the

finite element analysis is to find as good an approximation to the exact solution of the

mathematical problem as can be obtained with a given amount of engineering work and

computer resources. The issue of how well the selected mathematical model corresponds

to the physical reality is to be treated completely independently of the issue of the

numerical accuracy of the finite element solution. In the present paper, we focus

exclusively on the errors introduced by the finite element discretization, not on the

physical modeling issue.

The finite element method based on the displacement formulation starts by

minimizing the functional of the potential energy

I-I(_) = ½ B(_,_)- F(_) (1)

over a finite-dimensional subset ,_ of the space /_(_) of functions which have finite

swain energy over the domain f_ and fulfill the displacement boundary conditions. Here,

the bi-linear form ½ B(_, _) denotes the strain energy corresponding to some displacement

field a and F(_) the work of the applied loads. Thus, an approximation uv_ _ _(f2),

minimizing I-[(a) over _f2), is obtained, whereas the exact solution uex minimizes l-I(a)

over g(f2).

Consequently, for an assessment of the efficiency of a specific finite element scheme,

the magnitude of the discretization error in the energy norm is monitored as a function of

the number of degrees of freedom N used in the finite element approximation are. The

error in energy norm is defined by

def / "

I1 11 - qn( e - (2)

In the present study, the p-version of the FEM is applied in the form of a uniform p-

extension, increasing the polynomial degree of the approximation uniformly on the entire

mesh. As far as linear analysis is concerned, the p-version is distinctly superior to the h-

version for problems which have an exact solution that is analytic throughout the domain.

In such cases, exponential convergence rates (i.e., II ll can be achieved

asymptotically (N---_oo) with simple finite element meshes, whereas the best

convergence rate of the h-version is only algebraic (i.e., [[glle = cN 4 ).
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Even for problems which include a finite number of points where singularities occur

in the stresses, the p-version converges (algebraically) at least twice as fast as the h-

version. Resorting to the hp-extension, the exponential convergence rate can be recovered

even for these singular problems. Convergence rates significantly better than algebraic

can be obtained in the pre-asymptotic range (i.e., for practical N) by performing the p-

extension on a geometrically graded mesh in these cases, cf. [6].

In elasto-plastic analysis, FI(_) is a non-linear function of _ so that the properties of

the FEM for linear analysis do not carry over to elasto-plasticity directly. However, in the

incremental theory of plasticity, we solve a sequence of linearized problems with the

same geometry, but strain-dependent material properties and loads. The final solution is

obtained as the sum of those of the quasi-linear steps. Therefore, the overall performance

of the non-linear analysis will be determined by the smoothness of the exact solutions of

the stepwise problems.

The smoothness properties of the exact solution of purely elastic problems are well

known and can generally be determined a priori from the geometric shape and the

boundary conditions; on the other hand, little has been done yet to inquire how much the

introduction of elasto-plastic material behavior changes the smoothness properties of the

corresponding purely elastic solution.

However, when deciding which finite element method is more appropriate when

solving an elasto-plastic problem, the question of smoothness is of little relevance

because the higher-order methods perform significantly better for problems in any of the

two categories of smoothness discussed above. This important fact is often overlooked.

Furthermore, it is worth noting that the elastic-plastic material is still characterized by

continuous strains so that elasto-plasticity does not introduce any kind of an abrupt

"material interface" inside the elements. Such a situation might cause the p-version to

yield oscillatory answers. However, it does not occur in small-strain elasto-plasticity since

there is always a continuous change in the material properties, even though the one-

dimensional ideal elasto-plastic stress-strain relationship intuitively suggests some kind

of "discontinuity". Even upon unloading and reloading, the strains and consequently the

material properties (directly depending on the strains) remain continuous.

All contained plastic flow problems fall into the category of completely continuous

strains and, consequently, the corresponding displacements can be expected to be at least

not much more unsmooth than those resulting from purely elastic problems.

As far as uncontained plastic flow is concerned, the underlying mathematical problem

changes from the elliptic to the hyperbolic type, including possible bifurcations,

multiplicity of the solution, and the like; such problems are strictly beyond the limits of

small-strain elasto-plastic analysis for both the h- and p-versions of the FEM. They

cannot be solved by methods based on the principle of minimum potential energy. Of
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course,the physicalproblemfinally emergesinto unrestrictedplasticflow. However, the
FEM does not directly model the physical problem, but is only a tool for solving a
mathematical problem. If unrestrictedplastic flow is to be analyzed, a different
mathematicalmodel .has to be used, not just a different type of finite element
approximation.

The accuracy of the strains computed from the finite element solution is even more

important in elasto-plastic analysis than in purely linear problems because the stress-

strain law itself depends on the strains. We can expect accurate results only if the input to

the constitutive law is sufficiently accurate. Furthermore, errors tend to accumulate in a

prolonged incremental computation with many load steps.

A recent study [ 10] investigates numerically the pointwise quality of strains computed
directly from the finite element approximation of the displacement field for linear

poblems. This is exactly the technique that will be employed in an elasto-plastic

computation to determine the current material properties. The numerical investigation

[10] identifies various patterns of convergence and shows that in all cases and for a wide

variety of stress concentration factors (a smoothness criterion) the p-version outperforms

the h-version. Furthermore, it is evident that very small errors in the energy norm are

usually required to achieve sufficient accuracy of the pointwise strains, even for quite

smooth solutions. Such global accuracy levels are impractical for an h-version approach
due to the slow convergence of this method.

In summary, all considerations indicate that the p-version of the FEM will be

beneficial for elasto-plastic computations, and there is no indication that the p-version

might give rise to any new numerical problems not encountered in the h-version. Our
numerical examples strongly support this.



6

3. Numerical aspects of J2 plasticity

In the present paper, we are dealing with the application of the p-version of the FEM

to problems from metal plasticity. The computations are based on the ideal elastic-plastic

J2 flow theory, using the von Mises yield law. Further assumptions include small

displacements and small strains. The incremental formulation of the von Mises yield law
starts with the following assumptions:

The total strain increment can be decomposed into a purely elastic and a purely plastic
part:

dl_ = dlzel + dept (3)

We assume the engineering definition of the strain vector.

The yield criterion is independent of the hydrostatic pressure and of the third invariant
of the deviatoric stress tensor:

2
F = - %. (4)

J2 denotes the second invariant of the deviatoric stress tensor and (_y the uniaxial yield

stress of the material. No strain hardening is assumed. Only stress states such that F < 0

are permissible. Once the stress path reaches F = 0 in a point, plastic strains will develop

in that point upon further loading.

During a plastic loading increment, the stress state is confined to the yield surface

given by eq. (4):

In equation (5), d_ denotes the stress increment vector and the superscript t indicates

transpose.

The direction of the plastic flow is given by (normality rule)

= L- dJ (6)

Here, a_ is a proportionality factor and ¢r denotes the stresses in vectorial notation.

Using Hooke's law for the elastic part of the strains,

&el = D-lc/c, (7)
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whereD is the linear-elastic material matrix, formulas (3), (5), and (6) can be combined

to determine the elasto-plastic stress increment

OF _F t
da = D.,& = D- -_F--F_F--1 / ' (8)

corresponding to a total strain increment de. Formula (8) defines the elasto-plastic

material matrix Dep. This relationship is needed in a finite element program to determine

the tangential stiffness matrix for a Newton-Raphson method or a similar scheme.

Furthermore, it can be used to integrate the constitutive.law on the integration point level

of the finite element method in case an explicit algorithm is to be used for that. Whereas

the correctness of the tangent stiffness matrix has only an influence on the efficiency of

the non-linear solver, the integration of the constitutive law has a direct impact on the

accuracy of the final results.

Much attention has been dedicated to the accurate integration of the constitutive law

during the last two decades (cf. [11], [12], [13], [14]). A comprehensive scheme of error

control and quality assurance in the FEM has to include this aspect, which is, however,

independent of the finite element discretization technique. With a view to practical

applications, and especially with respect to the complicated plastic laws which become

increasingly common in rock mechancis and concrete modeling, the authors of the

present study favor a fully general implicit scheme similar to the one presented in [14].

However, at present, only the traditional tangent-radial return method has been

implemented. This simple scheme can be considered sufficiently accurate for the von

Mises yield criterion without hardening provided that small steps are used for the
integration of the constitutive law.

However, the most challenging computational issue specifically related to the use of

J2 flow rules is created by the condition that the plastic strains correspond to an

incompressible mode of deformation (note that it follows form equations (4) and (6) that

the plastic strain increments have no volumetric component): Starting from a

compressible elastic behavior, the material becomes progressively more incompressible

during the elasto-plastic deformation process as the amount of plastic strain increases as

compared to the elastic strain. This will eventually lead to a severe locking problem in the

traditional h-version of the finite element method if the displacement formulation is used.

The problem of incompressibility locking in J2 plasticity has already been studied in [ 15],

and various schemes have been devised to avoid the locking, either by "reduced

integration" or by introducing an independent approximation of the hydrostatic pressure.

Today, most approaches use the mixed finite element method resulting from the latter

idea, entailing all the disadvantages and additional complications inherent to mixed
methods.
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On the other hand, the problem of locking due to incompressibility has been studied

extensively for the p-version of the finite element method (see [16], [17], [18]), and it has

been shown that no locking effects occur when the polynomial degree p is greater than 4.

No special precautions or mixed methods have to be introduced to obtain accurate results.

Our numerical experiments will demonstrate clearly that locking due to

incompressibility does not occur in the p-version analysis of the elastoplastic problem.

4. Implementation

In many details, the implementation of an elasto-plastic material law in a p-version

FEM code is identical to a standard h-version implementation. Therefore, we summarize

only briefly the main features of the implementation used for the present study:

First, we carry out a purely linear elastic analysis and perform a uniform p-extension,

starting at p=l (piecewise linear approximation). The maximum polynomial degree

available is p=8. The convergence of the strain energy is monitored. Based on the

assumption that the error in energy norm converges algebraically, a very reliable estimate

of the exact energy can be obtained by extrapolation from three different p-levels (cf. [6]).

Throughout the present study, the space of hierarchical tensor product trial functions has

been used (product space).

To avoid errors in the linear solution by approximate geometrical mapping, we always

use the blending-function method (see [6]) to describe curved boundaries accurately.

Therefore, we can use very large elements even in the presence of curved boundaries.

When the error estimate for the purely linear solution reaches a user-defined

threshold, the non-linear computation starts. There is no guarantee that the non-linear

solution will be of the same order of accuracy as the linear solution, but we rather expect

the nonlinear solution to be less accurate. We have already seen that, e.g.,

incompressibility effects which are not originally present in the system will be introduced

by the plastic material law, and those effects will slow down the convergence of the error

in energy norm. Therefore, it seems reasonable to impose very restrictive accuracy

requirements on the linear solution. In our practical computations, as a rule of thumb, we

set the desired accuracy of the linear solution to about 10% of what we would consider

reasonable for a purely elastic analysis.

The next step is to determine at which fraction of the total imposed load the system

will start to yield. The remaining load is divided into a number of load increments, and in

each of these, the Newton-Raphson method with a consistent tangent predictor is applied.

The Newton-Raphson iterations are stopped when both the relative magnitude of residual

force vector and of the change in the incremental displacements in either the Euclidean or

the maximum norm are smaller than a prescribed threshold. In each load increment, a

check for elastic unloading is performed in every integration point.
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Finally, stressresultsareavailableonly in the integrationpointssincetheincremental
elasto-plasticlaw hasbeenevaluatedonly there.To obtain stressresultselsewhere,a
least-squaresapproximationfor eachof the componentsof thestressvector is computed
for eachelementindividually. For this least-squaresfit, we employ the trial functions
correspondingto the polynomial level usedin the finite elementapproximationof the
displacements.

5. The thick-walled tube under internal pressure

First, we study an example for which an analytical solution is available, the thick-

walled tube under internal pressure. The analytical solution for both the loading and the

unloading - including elasto-plastic re-loading in the reverse direction - has been given in

[19]. It is one of the few elasto-plastic two-dimensional problems for which an analytical

solution even for the unloading is availabe, and therefore we use it as a basis for the

evaluation of the numerical quality of the h- and p-versions of the finite element method.

However, this problem is also of considerable practical interest since the pressurized

tube may be used as a model for the cold-working of holes, e.g., in aircraft engineering.

Rich et al. [20] suggest to use the analytical solution for the analysis of a wide range of

cold-worked holes, and in our practical application example, we will study how well this

solution is suited for a cold-worked lug.

Cold-working is a process which is used to produce favorable stresses that

significantly reduce the effects of stress concentration around a hole. In this method, an

oversized and tapered mandrel, sometimes with a lubricated sleeve, is pulled through the

hole to be cold-worked. Upon the removal of the mandrel, the hole is surrounded by a

region of residual compressive stresses. This method is generally used for holes at the

time of aircraft manufacture, as well as during service, to increase the fatigue life of

structural components.

5.1 Analytical solution

The analytical solution for the problem of the tube under internal pressure has been

given in [19] and applied to the cold-working process by [20]. The following assumptions

are adopted in the analysis:

• elastic-perfectly plastic material model

• plane strain situation

• von Mises yield condition

• incompressibility of both the elastic and plastic zones (no analytical exact solution

exists for compressible elastic deformation).

In the application to cold-working, the mandrel is assumed to remain purely elastic.
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Notation. Consider a tube with an intemal radius a and an extemal radius b, Young's

modulus Ep, Poisson ratio vp and uni-axial yield stress 6y. Denote the modulus of

elasticity for the mandrel by E b, its Poisson ratio by vb and its radius by a+I. The

difference I between the radii of the mandrel and the hole is called interference.

Upon inserting the mandrel into the tube, a plastic zone of radius p is created. This

radius is defined by the following implicit equation (if no solution exists for the equation,

the interference is simply too small to create a plastic zone):

+
(9)

and the pressure between the mandrel and the hole can be shown to be

°2]P= (lY[21n-9 1-_-_
qt'_[ a + •

(10)

2(Yy, b

ff P> -_- m_,

for us.

then the entire cylinder becomes plastic, and this case is of no interest

The circumferential stresses around the hole are given by:

[Go _ 21nr+l+= P
O'y

air£p

p£r_b.

(11)

Upon removal of the mandrel, the tube undergoes an elastic unloading. If

2Gy [ a 2

are given by:

no reverse yielding occurs, and the residual circumferential stresses
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I_ 0 _---

21np+l+_-_ - 21nP-+a 1-_-Jr2(b2-a2)J

¢_Y {[ 02. a r2(b2-a2)J--_ -_.Pff-_]-[21nP+l--_2]a2(r2+b2)_

aSrSp

p_rSb.

(12)

Otherwise, compressive yielding occurs in the zone a < r < OR, where OR is given by the

implicit equation:

p_21n-_-a - 1+ _ - O.

PR 2Cy
(13)

In this case, the circumferential stress is:

(Y0 =

p2oy{[21o +1+ ]2
(L p

Jf£+£l_
4_LL b2 r 2 ]

21n__r+1+ P_'l[
04 b2JJ a<r<-Pn

Lb2+r jj p._<r p
• 2 2p.+ .ll

2 _ 7jj p<r<b.

(14)

This problem is suitable for both the incremental and deformation theories of plasticity

because it is axisymmetric and the stresses are proportional.

Note that eq. (6) in [20] is not correct which renders the stresses in the compressive

plastic zone around the hole after unloading. The correct solution is found in [19].

5.2 Numerical Examples

The problem described in the previous section is solved by the p-version as well as

the h-version of the FEM. The finite element solutions to this problem will demonstrate

the capabilities of the p-version and its accuracy.

Comparison with the exact solution

We study a tube with an internal radius a=l.5in and an outer radius b=4.0in subjected

to a cold-working process. A plane strain situation is assumed. A pressure of P=62,000psi
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is applied to both the inner side of the tube and the outer face of the mandrel. We

determine the corresponding interference level as the sum of the radial displacements of

both bodies. Thus, an interference I--0.03399in is obtained. The material properties of the

tube are defined by Ep=10,000,000psi, the uniaxial yield stress gy=58,000psi, and

"Vp=0.49. We select this value of the Poisson ratio in order to be close to the exact

analytical solution which assumes elastically incompressible material. The displacement-

based finite element schemes cannot be applied if v--0.5 exactly. The mandrel's material

properties are taken to be Eb=30,000,000psi , and Vb=0.3. All finite element computations

are based on an elastic-perfectly plastic von Mises yield law.

Exploiting symmetry, only one quarter of the domain was analyzed. The radial

displacements are constant along the perimeter. For each of the two versions of the FEM,

two different meshes have been analyzed. The purely elastic mandrel has been studied

only in one simple p-version mesh, imposing extremely high accuracy requirements.

D C

V y

Figure 1: Meshes used in the p-version analysis of the tube under internal pressure.

In Fig. 1, the meshes used for the cylinder in the p-version are shown. We use a

uniform mesh of two elements and a graded mesh of six elements for the representation

of the tube. The boundary conditions are Uy = 0 on edge A-B, us = 0 on edge C-D, and

tn = -P on A-D, where t,, denotes the normal traction. The other boundary conditions are

traction-free. The p-level is increased on each element until the estimated global error in

energy norm is decreasing below 0.1%.

For the h-version, we use meshes consisting of 70 8-noded elements and 140 8-noded

elements, respectively. Both meshes were graded in the radial direction such that the

biggest element was ten times bigger than the smallest. A mesh consisting of 300 8-noded
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elements was also analyzed to make sure thatthe mesh of 140 elements was fineenough

in the circumferentialdirection.The threedifferenth-versionmeshes arc shown in Fig.2.

The resultsobtained with the 300-element mesh are practicallyidenticalto those of the

140-element mesh, so only the lattermcsh isused in our cxaml_les.

70 elements 140 elements

300 clcm.

1:;igur¢2: Meshes used in the h-versionanalysisof the tube under internalpressure

Furthermore, we also analyzed the mesh with 70 elements, employing 9-noded

elements insteadof the 8-noded elements. The trialfunctionspace associatedwith the 9-

noded elements corresponds to theproduct space atp=2 in the p-version.

The h-version computations were carried out with the commercial finiteelement

solver ADINA [21].The ADINA system offersa specialpressure-displacementelement
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for incompressible materials, based on the mixed finite element formulation [22]. Tiffs

element was used in the analysis.
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Figure 3: Circumferential stress in pressurized tube, loading case. Results of p-version

FEM analysis and exact solution.

In Fig. 3, the exact analytical solution of the circumferential stress (c 0) for the

loading case is compared with the p-version solution. The h-version solution with 8-

noded elements and the exact solution are displayed in Fig. 4. Note the very good

agreement between tile exact and the finite element solutions in the whole range, except

at the interface between the elastic and plastic zones. At this location, the h-version

solutious with the 8-noded elements tend to oscillate, and the quality of the results is

questionable, whereas the p-version solution is much smoother and follows the exact

solution more closely. The p-version merely produces smoothed stress results close to the

elastic-plastic interface. It is clearly visible that the elasto-plastic radius (p) can easily be

determined from the p-version solutions, but not so well from the solutions obtained by

the h-version with 8-noded elements.

However, the h-version solution improves considerably when we employ the 9-noded

elements instead. These elements have an additional "internal mode" trial function. The

corresponding results arc displayed in Fig. 5. No oscillations are present any more, even
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in the coarser mesh. The computer time for this analysis is somewhat greamr than for the

8-noded elements. It is interesting that, even in the h-version, obviously some degree of

"p-extension" and switching to a different space of trial functions is required to capture

the solution of this problem properly.

¢¢J
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w

¢/}

m

e-

$
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Figure 4: Circumferential stress in pressurized tube, loading case. Results of h-version

FEM analysis with 8-noded elements and exact solution.
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Upon removing the internal pressure, the tube first undergoes an elastic unloading; in

the last stage of the unloading, reverse yielding occurs in the vicinity of the inner surface

of the tube. The overall performance of the h-version as well as the p-version, compared

to the exact analytic solution, is presented in Fig. 6 and 7, respectively.
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Figure 7: Circumferential stress in pressurized tube. Residual stress after cold-working.

Results of h-version FEM analysis and exact solution.

In Figs. 8, 9 and 10, we present "zoomed" plots of the circumferential stresses in the

reverse yielding zone. The same phenomenon as in the loading case is observed at the

new elasto-plastic interface radius PR: Both h-version meshes with 8-noded elements

exhibit oscillations of the stress in the reverse yielding zone. Furthermore, it turns out that

the 2-element p-version mesh is obviously unable to capture the very narrow zone of

reverse yielding properly. Clearly, just one element in the radial direction is not sufficient.

However, a very good solution is obtained with the 6-element mesh and the p-version.

Also, the solution of the h-version with 9-noded elements is quite accurate.
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Figure 8: Circumferential stress in pressurized tube. Residual stress after cold-working.

Results of p-version FEM analysis and exact solution. Zoom of zone of compressive

plastification.

In order to verify the smoothness of the material properties in this elasto-plastic

computation, the condition number (ratio of the largest and smallest eigenvalue) of the

tangential material matrix (stress-strain-matrix) has been checked in all integration points

during the loading and unloading process. The condition number changes very little

during the loading and unloading and depends predominantly on the elastic material

properties. This indicates that the influence of elasto-plasticity on the smoothness of the

stress-strain law is very small.
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A rough comparison between the computation times of the finite element solutions

(measured on an IRIS SGI workstation) is given in Table 1. The computation times for

the p-version include multiple runs with increasing p-levels to minimize the error of the

elastic solution. Table 1 demonstrates that the computer time resources required by the p-
version and the/a-version solutions are of roughly the same order of magnitude.
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Table 1: Computation times and number of unknowns for the elasto-plastic loading

and unloading of a tube under internal pressure (v = 0.49). The PEA solutions were

computed on a Silicon Graphics SGI IRIS Indigo workstation (R3000, SPEC mark=26).

The computation umes reported below do not include post-processing operations. The

number of degrees of freedom does not include constrained degrees of freedom.

Coarse mesh

ADINA FEASIBLE

82 s 88 s

450 d.o.f. 288 d.o.f.

Fine mesh 162 s 90 s

870 d.o.f. 456 d.o.f.

* maximum p-level is 8, product space

** maximum p-level is 5, product space

The realistic case Of Vp-_.3 in the elastic zone

Usually, the Poisson ratio of engineering materials in the elastic region is close to 0.3.

In the following, we use the finite element solution to show that the analytical solution

based on the incompressibility assumption in the elastic region may be considered as a

good approximation for the solution with Vp=0.3.

For this case, we select a smaller interference than before, I=0.02in. This will

emphasize the influence of the compressibility in the elastic zone since the extent of the

plastic zone will be smaller than before. Employing the 6-element mesh with the p-

version, and the 140-element mesh with the h-version, the corresponding pressure was

calculated to be P=52,200psi. The finite element solutions for Vp= 0.3 are compared to

the analytic solution (assuming Vp=0.5) in Fig. 11. It is evident that the unrealistic

assumption of incompressibility in the elastic region does not significantly affect the

validity of the analytical solution for the practical case. The elasto-plastic radius,

however, is smaller than the one predicted by the FEM solutions.
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Figure 11: Circumferential stress in pressurized tube, v = 0.3. Residual stress after cold-

working. Results of p-version FEM analysis and analytical solution for v = 0.5.

6. Practical application: The co!d-working of an attachment lug

Usually, as a first approximation, engineers use the closed form solution for a cold-

worked cylinder given in [20] in real life problems, even though the geometry of the

realistic problem is different from the cylinder. A cold-worked fastener hole located near

a plate edge, or a lug, is usually idealized as a cold-worked tube having an inner radius

equal to the bole radius, and an outer radius equal to the distance of the fastener hole from

the edge. We show in the following that this approximation has considerable deficiencies

and should be used only for fairly crude accuracy requirements.
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Figure 12: Mesh used in the p-version analysis of an attachment lug. Asterisks indicate

the maximum extent of the plastic zone during cold-working.

In the case of the lug, which is no longer axisymmetric, the question of adequate finite

modeling arises. The plastic zone is no longer bounded by a circle, and also the

deformations of both the mandrel and the hole deviate from the purely circular shape.

Therefore, a finite element analysis imposing uniform pressure or constant radial

displacements on the hole does not reflect the true situation properly. Neither the final

shape of the deformed mandrel and hole nor the pressure distribution is known a priori.

Furthermore, even for the axisymmetric case of the tube (with corresponding

dimensions), an analysis carried out with prescribed displacements equal to the

interference (i.e. assuming a rigid mandrel) reveals considerable differences in the

residual stresses (roughly 10% deviation) in the elastic zone of the tube when comparing

with the deformable mandrel case. Also, the plastic radius is over-estimated by the model

with the rigid mandrel, although the stresses in the plastic region are very close to those

obtained with an elastic mandrel and the corresponding pressure inside the tube differs by

only 1%.

In the following, we show how to pursue a more realistic analysis.

The lug with a hole of radius a=l.5in, outer radius b=4.0in and total length of l=12in

was modelled by 13 elements (see Fig. 12). An interference level I=0.02in was assumed

between the mandrel and the lug. For the lug, we use material constants

E= 10,000,000psi, gy=58,000psi and v=0.3. Symmetry conditions were used along edges

A-B and C-D to reduce the computation time.

We assume that the influence of the elastic stiffness of the mandrel can be represented

by a constant-stiffness distributed elastic spring interface element attached to the edge of

the hole. The corresponding approximate normal spring stiffness is readily obtained from

the axisymmetric linear analysis of the mandrel subject to constant pressure. The

tangential stiffness of the spring is zero (no friction). Displacements corresponding to the

original interference between the lug and the mandrel are now prescribed on the interface
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elements as an initial displacement rather than directly on the hole. Thus, we obtain a

deformed shape of the hole (and the mandrel) which deviates from the circle, and a non-

uniform pressure distribution reflecting the actual stiffness relation between the lug and

mandrel.

Note that the lug is constrained exclusively by the spring interface elements and the

symmetry constraints. We consider the cold-working process in a co-ordinate system

attached to the mandrel. The analysis simulates a cold-working procedure in which the

mandrel is not capable of carrying any resultant force in the plane of the lug, but is

allowed to move freely. Therefore, we obtain an equilibrated pressure distribution along

the hole. The lug as a whole moves, but the left end of the model (attached to the airplane

and thereby constrained) remains almost a straight line provided it is far enough from the

hole.

After loading, removal of the mandrel is simulated by deleting the interface elements.

At this stage, the model of the lug has only rigid body and symmetry constraints. Traction

boundary conditions are given by the pressure formerly carried by the spring interface

elements. We are now solving a problem which has only traction boundary conditions

(except the symmetry constraint), and therefore we require the tractions to be in

equilibrium.

Note that the two stages of the computation are characterized by different boundary

conditions and, consequently, a different number of unknowns, and that adding or

deleting elements in an existing model may change the smoothness of the exact solution.

This has to be kept in mind when checking the accuracy of the corresponding purely

linear solutions to ensure the use of reasonable models in the two-stage non-linear

analysis.

Four interface elements were used along arc B-C. The material properties of the

mandrel are the same as in all previous examples, giving a normal spring stiffness

Cn=38,500,000psi. Fig. 10 displays the maximum extent of the plastic zone during the

loading as obtained by the p-version analysis with p=5 (product space), corresponding to

an estimated error in energy norm of less than 0.1% in the elastic solutions. The

maximum deviations of the internal pressure during cold-working from the constant value

P=52,200psi (corresponding to the tube) were +8.7% and -2.5%.
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Figure 13: Cold-worked attachment lug. _ircun_erenu stresses after unloading for

various locations. Comparison with analytical solution of cold-worked tube.

In Fig. 13, the "circumferential" stress in the lug after complete unloading is

compared with the solution obtained by application of the analytical solution of the tube.

The unloading is purely elastic. Fig. 13 displays the stress at 0--0 °, 0--90 °, and 0=180 °

(cf. Fig. 10). For 0=0 °, the stress is much higher than the value given by the closed form

solution in the the elastic zone and at the elastic-plastic interface. However, at 0--90 °, the

most important location for practical purposes, the analytical solution over-estimates the

actual value of the stress in the elastic region closer to the hole, but under-estimates it

close to the outer boundary of the lug.

This realistic problem clearly demonstrates that the simple thick-walled robe analogy

reflects the actual situation of the lug only quite inaccurately whereas the p-version FEM

is a very useful tool for studying elasto-plastic problems involving even complex loading

and unloading conditions.
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Conclusions

We conclude that the p-version of the finite element method performs very well in

small-strain incremental elasto-plastic analysis of structures. The p-version makes it a lot

easier to control the discretization error of the finite element method. Error monitoring

and control is achieved automatically, with minimum user interaction, and without

substantial loss of computational efficiency. In some cases, we find that the models based

on the p-version yield clearly superior accuracy in comparison with their h-version

counterparts.

As an example, the paper demonstrates the application of the p-version of the FEM to

the cold-working problem. It is seen that the method is very well suited for this practically

relevant problem and that reliable and realistic results can be obtained with a small

amount of modeling work.

In summary, the application of the p-version in elasto-plastic structural analysis can

be recommended.
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